Absent Multiple Kernel Learning
نویسندگان
چکیده
Multiple kernel learning (MKL) optimally combines the multiple channels of each sample to improve classification performance. However, existing MKL algorithms cannot effectively handle the situation where some channels are missing, which is common in practical applications. This paper proposes an absent MKL (AMKL) algorithm to address this issue. Different from existing approaches where missing channels are firstly imputed and then a standard MKL algorithm is deployed on the imputed data, our algorithm directly classifies each sample with its observed channels. In specific, we define a margin for each sample in its own relevant space, which corresponds to the observed channels of that sample. The proposed AMKL algorithm then maximizes the minimum of all sample-based margins, and this leads to a difficult optimization problem. We show that this problem can be reformulated as a convex one by applying the representer theorem. This makes it readily be solved via existing convex optimization packages. Extensive experiments are conducted on five MKL benchmark data sets to compare the proposed algorithm with existing imputation-based methods. As observed, our algorithm achieves superior performance and the improvement is more significant with the increasing missing ratio.
منابع مشابه
Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملUnsupervised Multiple Kernel Learning
Traditional multiple kernel learning (MKL) algorithms are essentially supervised learning in the sense that the kernel learning task requires the class labels of training data. However, class labels may not always be available prior to the kernel learning task in some real world scenarios, e.g., an early preprocessing step of a classification task or an unsupervised learning task such as dimens...
متن کاملMetric Learning with Multiple Kernels
Metric learning has become a very active research field. The most popular representative–Mahalanobis metric learning–can be seen as learning a linear transformation and then computing the Euclidean metric in the transformed space. Since a linear transformation might not always be appropriate for a given learning problem, kernelized versions of various metric learning algorithms exist. However, ...
متن کاملSemi-supervised Online Multiple Kernel Learning Algorithm for Big Data
In order to improve the performance of machine learning in big data, online multiple kernel learning algorithms are proposed in this paper. First, a supervised online multiple kernel learning algorithm for big data (SOMK_bd) is proposed to reduce the computational workload during kernel modification. In SOMK_bd, the traditional kernel learning algorithm is improved and kernel integration is onl...
متن کامل